Mechanical Systems and Urban Innovation Sciences

Department of Intelligent Mechanical Systems

Intelligent Systems Optimization

Our laboratory aims to develop basic theories and applications of intelligent systems optimization methodologies for supply chain management, scheduling, system science, and intelligent robotics. We are conducting research on new modeling, new optimization methods, artificial intelligence methods, efficient algorithms, modeling, analysis, and diagnosis for safe and optimized operations of large-scale industrial systems.

Prof. NISHI Tatsushi Research Themes Systems optimization /Artificial intelligence/ Supply chain management/ Scheduling/Robotics

Assoc. Prof. SATO Haruo Research Themes Radioactive waste disposal/Environmental dynamics/Radiation safety

Asst. Prof. LIU Ziang Research Themes Game theory/Decision making/Inventory management/Computational intelligence/Machine learning

Intelligent Adaptive and Learning System

In our research field, our aim is to achieve robots capable of performing complex tasks, and we conduct fundamental research on advanced cognitive capabilities such as problem-solving, decision-making, and environment perception. Additionally, we strive for the social implementation of robots and engage in applied research in areas such as healthcare and rehabilitation.

Prof. MATSUNO Takayuki

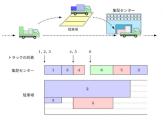
Assoc. Prof. TODA Yuuichirou Research Themes Soft computing

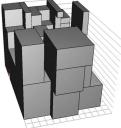
Biorobotics

We research and develop robots that are highly adaptable to the environment like living organisms, robots that cooperate with humans, and robots that can be applied to humans. For example, we are researching and developing a snake-like robot that can move through various environments like a biological snake, and a rescue robot for disaster response. We are also developing a remote-controlled needle-puncturing medical robot and a rehabilitation device using soft actuators.

KAMEGAWA Tetsushi

Research Themes Robotics/Snake robots/Rescue robots/ Medical robots




Asst. Prof. SHIMOOKA So

■ Research Themes

Soft robotics/Mechatronics/Actuator/ Medical and welfare engineering

Production Intelligence

In the field of operations research, which is the mathematical and scientific process for better decision making for practical problems, we focus mainly on mathematical systems optimization to solve production, logistics and transportation problems. Specifically, we studies production scheduling problems in factories, stacking, premarshalling, and retrieval problems in

warehouses, the three-dimensional truck loading problem considering the retrieval order for package delivery, and so on.

TANAKA Shunji Research Themes Operations research/Mathematical

Assoc. Prof. YANAGAWA Yoshinari

Research Themes Decision Modeling/Production Management/Ergonomics

Intelligent Mechanical Control

Control theory is one of the fundamental technologies supporting the current society. Its application field ranges widely from industrial apparatus to multi-agent systems. We focus on both theoretical and applied research on vast related topics including human-machine system like walking assistance device.

NAKAMURA Yukinori ■ Research Themes Control theory/Control engineering/ Machine learning/Data science

Senior Asst. Prof.

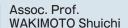
Asst. Prof. IKEZAKI Taichi

■ Research Themes Control theory/Control engineering/ Machine learning/Data science

Sysetm Integration

Our research is about actuators and device for mechatronics and their system applications.

 Application of micro actuators and special environmental mechanisms


· Microreactors and microfluidic devices

High-performance smart pneumatic artificial muscles, soft mechanisms, and medical and welfare equipment applications Research on actuators for extreme environments and devices for space probes

using film processing technology

■ Research Themes Actuator/Sensor/Mechatronics/ Softmechanism/Welfare device/ Microsystem/Microreactor/Specific environment/Ultrasonics/Piezoelectricity/ Microchannel

■ Research Themes Actuator/Sensor/ Mechatronics/Softactuator/ Softmechanism/Medical device/ Welfare device

Asst. Prof. YAMAGUCHI Daisuke

Research Themes Actuator/Sensor/Mechatronics/ Actuator/Softmechantonics/ Softactuator/Softmechanism/ Microsystem/Specific environment/ Extreme environment/Spacecraft/Lunar exploration/Pneumatics/Ultrasonics/ Piezoelectricity

Mechatronic Systems

The Mechatronics Systems Laboratory is engaged in creative and fundamental research and development of new sensors and actuators, applied research and development of robot hands and medical diagnosis and measurement devices using these technologies, and research and development of peripheral technologies. In particular, we focus on sensors and actuators based on the piezoelectric effect as a driving principle, and our research ranges from basic research such as driving theory to design, development, and evaluation of new devices, as well as applied research such as robot control using these devices.

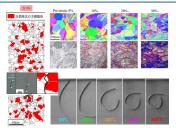
MASHIMO Tomoaki

■ Research Themes Microrobotics/Actuators/ Sensors/Ultrasonic motors

Assoc. Prof. SHIBANOKI Taro

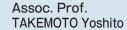
■ Research Themes Microrobotics/Actuators/ Sensors/Ultrasonic motors

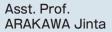
Asst. Prof. IZUHARA Shunsuke


■ Research Themes Microrobotics/Actuators/ Sensors/Ultrasonic motors

Mechanical Systems and Urban Innovation Sciences

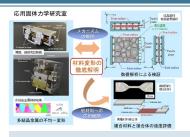
Department of Advanced Mechanics


Structural Materials


Our research focuses on metallic materials, composite materials, and functional materials to create the required material properties by controlling their microstructures. With the motto "Seeing is believing," we emphasize the importance of observing, thinking about, and modeling phenomena by ourselves. Laboratory students have access to a variety of state-of-the-art electron microscopy systems and are able to learn microsampling techniques, as well as observation and analysis techniques at the atomic level.

Prof. OKAYASL Mitsuhiro

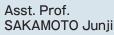
Research Themes Structural Materials/ Composites/Functional Materials/Microstructures


Research Themes Structural Materials/ Composites/Functional Materials/Microstructures

Structural Materials/ Composites/Functional Materials/Microstructures

Applied Solid Mechanics

The target of our research is deformation, damage and fracture of various practical materials, including metallic and polymeric materials. We conduct experimental observations of nonuniform deformations for the materials and the corresponding numerical simulations in various levels.


Prof. TADA Naoya

■ Research Themes Fracture / Damage / Deformation / Solid mechanics

Assoc. Prof. **UEMORI** Takeshi

■ Research Themes Constitutive equation / Deformation / Numerical analysis Mechanics of plasticity

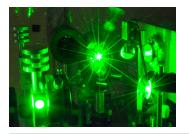
■ Research Themes Fracture / Fatigue / Vibration / Fracture mechanics

Machine Design and Tribology

In order to realize a carbon-neutral or decarbonized society, mechanical systems are required to be highly efficient, lightweight, and have a low environmental impact. At the mechanical design laboratory, we apply cutting-edge surface modification methods, coating methods and analysis methods to study technologies that dramatically improve the life, efficiency, and functionality of power transmission elements for EVs and various tribo-elements.

Prof. FUJII Masahiro

Research Themes Mechanical element/Tribology/Gear/ Fatigue strength/Low friction and wear/Surface modification/Coating



Assoc. Prof. SHIOTA Tadashi

Research Themes

Mechanical element/Tribology/Gear/ Fatigue strength/Low friction and wear/Surface modification/Coating

Nontraditional Machining

Along with the rapid progress of industrial technology, various new materials with excellent properties have been developed. Most of these materials are difficult to machine by the conventional mechanical methods, and the demand for machining of fine complicated shapes has been increased. Our laboratory is researching on high-performance and highfunctional nontraditional machining methods, such as Electron Discharge Machining (EDM), Electron Beam Machining (EBM), and Laser Beam Machining (LBM) with using electric, electronic, optical energies. In addition, we are developing novel machining methods for the next generation.

OKADA Akira Research Themes Nontraditional machining technology

Assoc. Prof. OKAMOTO Yasuhiro ■ Research Themes Laser beam machining/Electrical discharge machining

Asst. Prof. SHINONAGA Togo ■ Research Themes Electron beam machining/Laser beam machining

Manufacturing Engineering

Studies on high efficiency, high precision, high quality, optimization, and intelligent automation of machining, which is the basic technology of manufacturing, and its peripheral technologies are carried out. In particular, advanced manufacturing technology for both machine tool users and builders is being developed through studies on not only grinding, cutting and abrasive finishing or their evaluation technology, but also further development of Al / IoT technology

OHASHI Kazuhito Research Themes Manufacturing Engineering/ Grinding/Machining (Cutting)/ Abrasive Machining

Senior Asst. Prof. KODAMA Hiroyuki Research Themes Manufacturing Engineering/ Machining (Cutting)/Grinding/ Abrasive Machining/Data Mining

specialized in the field of manufacturing.

Asst. Prof. KANEKO Kazuki

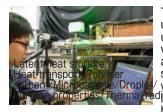
■ Research Themes

Mechanical Engineering/Manufacturing Engineering/Grinding/Machining (Cutting)/Abrasive Machining

Fluid Dynamics

Understanding and controlling the forces that an object receives from the air plays an important role in industrial products such as automobiles and airplanes. The Fluid Dynamics Laboratory conducts research on fluid dynamics with the aim of contributing to the improvement of the performance of current industrial products and the development of new products. The Fluid Dynamics Laboratory conducts research on relatively slow flows, such as those assumed for wind turbines and automobiles used in wind power generation, to fast flows that reproduce the flight environment of airplanes and rockets, based on experiments, numerical calculations, and AI techniques.

Prof. **KOUCHI Toshinori** ■ Research Themes Aerodynamics/ Aerospace Engineering/ Mechanical engineering


Assoc. Prof. SUZUKI Hiroki ■ Research Themes Aerodynamics/ Aerospace Engineering/ Mechanical engineering

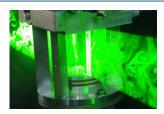
Asst. Prof. **TANAKA Kento** ■ Research Themes Aerodynamics/ Aerospace Engineering/ Mechanical engineering

Heat Transfer Engineering

The Heat Transfer Engineering Laboratory conducts research on understanding the basic phenomena of heat and mass transfer for the effective use of thermal energy and developing products with industrial needs. Specifically, we are conducting a wide range of research such as thermal energy transport and storage using latent heat, development of a new desiccant air conditioning system, investigations of droplet condensation, evaporation and freezing behavior with controlling the surface properties of an object, microcapsules containing ि प्रिक्षित heat storage materials, and numerical analysis of absorption and reflection by generation and functional thermal radiation films.

Prof. HORIBE Akihiko

■ Research Themes Latent heat storage/ Heat transport/Polymer sorbent/Microcapsule/Droplet/ Surface properties/Thermal radiation


Senior Asst. Prof. YAMADA Yutaka

Research Themes Latent heat storage/ Heat transport/Polymer sorbent/Microcapsule/Droplet/ Surface properties/Thermal radiation

Asst. Prof. **ISOBE Kazuma**

Research Themes Latent heat storage/ Heat transport/Polymer sorbent/Microcapsule/Droplet/ Surface properties/Thermal radiation

Heat Power Engineering

Heat Power Engineering Laboratory focuses on combustion research for improving thermal efficiency and reducing harmful exhaust emissions. Incylinder gas flow, spray and combustion processes are measured with ultra high-speed imaging, spectroscopy of emissions from chemical reactions, and lasers. Furthermore, CFD simulations are performed to predict and to elucidate those processes. Effective use of hydrogen, e-fuels and bio-fuels that contribute to carbon neutrality are also targeted.

Prof. KAWAHARA Nobuyuki

■ Research Themes Thermal Engineering /Internal Combustion

Engine/Combustion/Laser Diagnostic/Numerical Simulation

Assoc. Prof. KOBASHI Yoshimitsu

■ Research Themes Thermal Engineering/ Internal Combustion Engine/Combustion/Fuel/ Compression Ignition

Asst. Prof. TSUBOI Kazuya

■ Research Themes Thermal Engineering/ Combustion Engineering

& Science/Computational Fluid **Dynamics**

Mechanical Systems and **Urban Innovation Sciences**

Department of **Urban Environment Development**

Aseismic Design of Structures

Wind Resistance Group
Wind and tidal power generation are being developed by applying flow-induced oscillations in structures such as bridges caused by wind and water currents.

Earthquake Resistance Group

Our research is a combination of analytical simulation, earthquake damage surveys, and structural experiments in order to evaluate

and improve the seismic performance of buildings for disaster mitigation and earthquake-resistant cities. Focusing on sustainability, we explore innovative earthquake-resistant structural systems, such as hybrid designs featuring CLT timber walls and reinforced concrete.

Prof. HIEJIMA Shinji Research Themes

Wind engineering/Vibration engineering/ Wind power generation/Tidal current power generation

Assoc. Prof. **ALWASHALI Hamood**

Research Themes

Seismic evaluation of buildings/seismic retrofit/performance assessment design/ building structure/seismic disaster mitigation

Design of Steel Structures

Research and education are conducted on the advanced methods of construction and maintenance of civil infrastructures. The types of infrastructures of our interest include railway, road, river, port, and soil structures such as tunnels, bridges, dams, banks. In terms of research topics, particular focuses are placed on the development of the state-of-the-art structural monitoring and nondestructive inspection techniques for the infrastructures under operation. To this end, we are developing physio-chemical models of structures, materials. and measurements, and validate the models and the monitoring/testing techniques built on them through computer simulations and experiments.

Prof. NISHIYAMA Satoshi

Research Themes

infrastructure/construction/maintenance/ steel structure/monitoring/nondestructive inspection

Assoc. Prof. KIMOTO Kazushi

Research Themes

infrastructure/construction/maintenance/ steel structure/monitoring/nondestructive

Design of Timber Structures

Research and development of timber technologies and structural design methods for middle and high-rise timber

Structural design utilizing the latest wood materials such as CLT and fire-resistant timber.

Assoc. Prof. FUKUMOTO Kouji

■ Research Themes

Timber Structure/Timber Construction/Hybrid Structure/ Strucuture Design

Hydraulic Engineering

We have conducted education and research on water flow analysis and hydraulic design methods for various hydraulic structures in rivers and coastal areas, which are related to the creation of diverse aquatic environments that can coexist with nature.

Assoc. Prof. YOSHIDA Keisuke ■ Research Themes Hydraulic Engineering

Assoc. Prof. **AKOH Ryosuke** ■ Research Themes

Social Infrastructure(Civil Engineering/Architecture/ Disaster Prevention)/ Hydroengineering

Geotechnical and Groundwater Engineering

Study on Prediction of Slope Failure during Heavy Rainfall Development of Monitoring and Numerical Modeling Methods for Safety Assessment of River Levees against Seepage

Prof. KOMATSU Mitsuru

Research Themes Unsaturated soils/Analysis of seepage flow/Soil moisture

Assoc. Prof. FURUKAWA Zentaro

Research Themes Geodisaser Prevention Engineering/ Geoenvironmental Engineering/ Vegetation

Architectural Design and Theory

Development and Design Technical Practices of Design for Environmental Sustainability

Assoc. Prof. KAWANISHI Atsushi Research Themes Architectural Design/ Architectural Theory/Design/ Architectural Planning/Urban **Planning**

Wood-Based Materials

Although wood is a natural material with excellent mechanical properties, it has some weaknesses due to its biological origin. To overcome these weaknesses, previous researchers have developed various timber composite members and wood-based materials manufactured by gluing or connecting timber and small elements of wood. Now, to promote largescale timber structure with a view to decarbonization, we will use the latest analytical and measurement techniques to provide theoretical support for fracture phenomena of existing wood-based materials and timber composite

member; additionally, we will propose new combinations and forms of them on the basis of this analysis.

Asst. Prof. SUDO Ryutaro

■ Research Themes Wood-Based Material/ Timber Engineering

Wood Resource Utilization

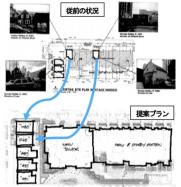
Wood is significantly different from other agricultural and marine products in that, with proper management, it can store carbon over the long term. Maximizing this capability could potentially help mitigate global warming. Our laboratory is working toward further mitigating global warming by recycling wood. Additionally, we are conducting research on the effective use of wood resources by combining recycled wood with adhesive technologies.

Prof. KORAI Hideaki

■ Research Themes Wood resources/Woodbased materials/Wood adhesion/ Recycled wood/ Carbon storage

Urban and Building Environmental Engineering

Energy is essential for maintaining human activity. However, consuming energy not only causes global environmental issues such as global warming and energy resource depletion, but also causes local (urban) environmental issues such as heat island phenomenon and air pollution. We have been researching in our laboratory to clarify the way urban structures and the related energy systems should be built in the near future in order to realize a comfortable urban environment while maintaining a sustainable earth.



Prof. NARUMI Daisuke

Research Themes Sustainable Urban and Architectural Design/Carbon Neutral/Energy System/Heat Island

Architecture and Urban Spatial Planning

A mechanism for inheriting a housing as a good stock from a previous eneration as a living housing for future generations, handing down the culture and the community or the characteristics in the district, and how to use them, how to control new development, We are proceeding with research, keeping in mind these ideas. So far, We are doing research on from the design control method of individual architecture to architectural planning planning history and urban patial planning, history related to architecture and planning / legal system and ts implementation, in both Japan and overseas cities.

Assoc. Prof. HORI Hirofumi ■ Research Themes

Architecture and urban spatial planning/Architecture and urban design policies/Architecture and urban landscape/Area based management/ Business improvement district

Senior Asst. Prof. HASHIDA Ryohei ■ Research Themes Architectural plan/ Housing theory /

Modern history

Design of Concrete Structures

address the goals of a sustainable society from the concrete perspective.

Concrete is the foundation of social infrastructure that supports this substance civilization. However, the act of building a structure with concrete, or the act of building concrete itself is an act that destroys the natural environment. I want to own a car, I want to travel abroad, I want to live with a flush toilet, a TV, a cooler, but I also want to protect the natural environment. Developing a sustainable society may be the answer to this contradiction of humanity. In this laboratory, we

Prof. **AYANO Toshiki** ■ Research Themes Construction material/ Concrete engineering

Assoc. Prof. FUJII Takashi ■ Research Themes Construction material/ Concrete engineering

Urban and Transport Planning

Realizing Sustainable Cities: In Japan, Sustainable cities are required in a declining birthrate and aging society. To realize safe, secure, and vibrant cities and transportation, we are researching efficient urban and transportation planning that takes into consideration the environment and people's lives.

Specifically, We are conducting research on the following topics.

1) traffic safety 2) public transportation plannin 3) barrier-free transportation planning 4) clarification of the actual situation of the spongification phenomenon that occurs in the process of population decline

compact city planning 6) landscape-oriented city planning

measures for city planning in line with the history of historical and cultural civil engineering heritage that take advantage of the uniqueness of the region

Prof. HASHIMOTO Seiji

■ Research Themes **Urban Transportation** Planning/Community Development by Transportation Policy/Traffic Calming

Assoc. Prof. HIGUCHI Teruhisa Research Themes Civil Engineering

History/Historical Structures Preservation and Utilization/Visual Town Planning/Disaster Prevention

Assoc. Prof. **UJIHARA Takehito**

■ Research Themes Urban Planning/ **Urban Environment**

/Urban Transportation

Water Environment and Sanitation

"Water" is essential for our lives and livelihoods. and also works as a medium of transporting substances on both local and global scales. Therefore, the sustainability of our life and ecosystem can be easily threatened by the excess usage and pollution of water resources. We are doing education and researches on "water quality control technology (water treatment)" and "relationship between

material transport and aquatic ecosystems" to solve or prevent such issues for water resources. We hope to make our society safe, comfortable, and sustainable.

Prof. NAGARE Hideaki

Research Themes Water environment/Water treatment/ Resource recovery/Chemical substances

Asst. Prof.HASHIGUCHI Ayumi

Research Themes Water environment/Water treatment/ Resource recovery/Chemical substances