応用数理学問題 (応用数理学 教育研究分野志願者)

第1問~第3問のすべてに解答しなさい。

第1問 応用数理学(基礎数学)

以下の各問に答えなさい。

- 問**1** 曲線 $y^4 + xy^2 2 = 0$ 上の点 $(x, y) = (1, \pm 1)$ における接線を各々求めなさい。
- 問**2** 次の関数 J(x) を最小にする x を求めなさい。

$$J(x) = \frac{(x - a_1)^2}{\sigma_1^2} + \frac{(x - a_2)^2}{\sigma_2^2}$$

ただし、 σ_1 と σ_2 はどちらも0でないとする。

問3次の積分の値を求めなさい。

$$\int_{-\pi/2}^{\pi/2} x^2 \cos x \, dx$$

問4次の関数の極値を求めなさい。

$$f(x,y) = x^2 - xy + 3y^2 - 2x + y + 1$$

第2問 応用数理学(基礎数学)

実数 a について, $A=\begin{pmatrix} a&1&-1\\1&0&1\\-1&1&a \end{pmatrix}$ を考える。以下の各間に答え

- 問1 Aの行列式を求めなさい。
- 問 $\mathbf{2}$ a=1とする。このとき、A は正則であることを示し、さらに A の逆行列を求めなさい。
- 問3 $\operatorname{Im} A = \{A\boldsymbol{x}\,;\, \boldsymbol{x}\in\mathbb{R}^3\}$ について、 $\dim\operatorname{Im} A = 2$ が成り立つとする。このとき、a の値を求め、さらに $\operatorname{Im} A$ の正規直交基底を一組求めなさい。

第3問 応用数理学(代数学)

 \mathbb{Q} は有理数体, x,y,z,s,t は変数とする。 $\mathbb{Q}[x,y,z]$, $\mathbb{Q}[x,y]$, $\mathbb{Q}[s,t]$ を, \mathbb{Q} 上の多項式環とする。 以下の各問に答えなさい。 ただし, $\langle z^2-xy\rangle$ は z^2-xy で生成された $\mathbb{Q}[x,y,z]$ のイデアルを表す。

問 1 $f(x,y,z)=z^3+xz^2+yz^2-xyz+xz-x^2y+1\in \mathbb{Q}[x,y,z]$ とする。

$$f(x, y, z) = (z^2 - xy)q(x, y, z) + r_0(x, y)z + r_1(x, y)$$

をみたす $q(x,y,z) \in \mathbb{Q}[x,y,z]$ および $r_0(x,y), r_1(x,y) \in \mathbb{Q}[x,y]$ を求めなさい。

問2 環準同型 $\psi: \mathbb{Q}[x,y] \to \mathbb{Q}[s,t]$ を,

$$\psi(q(x,y)) = q(s,st^2)$$

で定義する。 ψ は単射であることを示しなさい。

問3 環準同型 $\varphi: \mathbb{Q}[x,y,z] \to \mathbb{Q}[s,t]$ を,

$$\varphi(g(x, y, z)) = g(s, st^2, st)$$

で定義する。 $Ker(\varphi) = \langle z^2 - xy \rangle$ を示しなさい。

問 4 $\langle z^2 - xy \rangle$ は $\mathbb{Q}[x,y,z]$ の素イデアルであるかどうか述べなさい。

統計学問題

(統計データ解析学, 時空間統計学, 計算機統計学 教育研究分野志願者)

第1問~第4問より、3問選択し解答しなさい。

第1問 統計学

確率変数 X が区間 [a,b] 上の一様分布に従い,X の確率密度関数 f(x;a,b) が

$$f(x;a,b) = \begin{cases} \frac{1}{b-a} & (a \le x \le b) \\ 0 & (その他) \end{cases}$$

で与えられるとする。このとき、次の問1~問3に答えよ。

問1 X の期待値 E(X) と,分散 V(X) をそれぞれ求めよ。

問2 *X* のモーメント (積率) 母関数

$$M_X(t) = E(e^{tX})$$

を求めよ。

問3 X_1, X_2, \ldots, X_n は上の確率密度関数 f(x; a, b) をもつ一様分布からの無作為標本(すなわち独立かつ同一の分布に従う)とする。このとき,a, b の最尤推定量をそれぞれ求めよ。

第2問 統計学

以下の繰り返しのない二元配置法を考える。要因 A,B はそれぞれ a 個の水準 A_1,A_2,\ldots,A_a および b 個の水準 B_1,B_2,\ldots,B_b からなるとする (a,b) はともに 2 以上の整数)。各水準の組み合わせ (A_i,B_j) に対して X_{ij} が以下の式に従って観測されたとする。

$$X_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij} \quad (i = 1, 2, \dots, a; j = 1, 2, \dots, b)$$
 ただし、 μ, α_i, β_j は定数とし、 $\sum_{i=1}^a \alpha_i = 0$ 、 $\sum_{j=1}^b \beta_j = 0$ の関係が成り立つとする。 また、 $\varepsilon_{ij} \overset{\text{i.i.d.}}{\sim} N(0, \sigma^2)$ であり、 $\bar{X}_i = \frac{1}{b} \sum_{j=1}^b X_{ij}$ 、 $\bar{X}_{\cdot j} = \frac{1}{a} \sum_{i=1}^a X_{ij}$ 、 $\bar{X}_{\cdot j} = \frac{1}{a} \sum_{i=1}^a X_{ij}$ 、 $\bar{X}_{\cdot j} = \frac{1}{a} \sum_{i=1}^a X_{ij}$ 、次の問 1~問 3 に答えよ。

問 1 総平方和を
$$S_T = \sum_{i=1}^a \sum_{j=1}^b (X_{ij} - \bar{X})^2$$
, A 間平方和を $S_A = b \sum_{i=1}^a (\bar{X}_i - \bar{X})^2$, B 間平方和を $S_B = a \sum_{j=1}^b (\bar{X}_{\cdot j} - \bar{X}_{\cdot j})^2$, 誤差平方和を $S_E = \sum_{i=1}^a \sum_{j=1}^b (X_{ij} - \bar{X}_{i\cdot} - \bar{X}_{\cdot j} + \bar{X}_{\cdot j})^2$ とするとき, $S_T = S_A + S_B + S_E$ が成り立つことを示せ。

問 2 ある農作物の 4 つの品種 A_1, A_2, A_3, A_4 を 3 つの農場 B_1, B_2, B_3 で栽培したところ,次の収穫量 x_{ij} を得た。

農場品種	B_1	B_2	B_3	\bar{x}_i .
A_1	42	43	47	44
A_2	44	44	56	48
A_3	56	62	56	58
A_4	46	55	49	50
$\bar{x}_{\cdot j}$	47	51	52	$\bar{\bar{x}} = 50$

(第2問は次のページに続く)

この収穫量の結果に対し、総平方和を求めると 488 となる。次の分散分析表を完成させるために、(ア)から (\gt) に当てはまる値を求めよ。

変動	平方和	自由度	平均平方	F比
要因 A	(ア)	(エ)	(ク)	(サ)
要因 B	(イ)	(オ)	(ケ)	(シ)
誤差	(ウ)	(カ)	(3)	
計	488	(+)		

- **問**3 次の(1)と(2)について,5%の有意水準で判定せよ。ただし,有意性の判定にはF分布表を利用してよい。
 - (1) 4つの品種の間に差が認められるか。
 - (2) 3つの農場の間に差が認められるか。

F 分布表(分子の自由度 ϕ_1 ,分母の自由度 ϕ_2 に対する上側確率 5% 点)

ϕ_1 ϕ_2	1	2	3	4	5	6	7	8	9	10	11
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	242.98
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.40
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.60
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.31
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.10
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82

第3問 統計学

 X_1, X_2, \ldots, X_n は以下の確率関数 $f(x; \lambda)$ をもつポアソン分布からの無作為標本である(すなわち独立かつ同一の分布に従う)とする。ただし $\lambda(>0)$ は未知の定数である。また,0!=1 とする。

$$f(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$

次の問1~問5に答えよ。

問1 X_1 の期待値は $E(X_1) = \lambda$ であることを示せ。

問 2 対数尤度関数 $\ell(\lambda)$ を n,λ および X_1,X_2,\ldots,X_n の式で表せ。

問3 $X_1 + X_2 + \cdots + X_n > 0$ であるとき、 λ の最尤推定量 $\hat{\lambda}$ を求めよ。

問 4 Fisher 情報量 $E\{-\ell''(\lambda)\}$ を求めよ。ただし、記号 ' は λ に関する微分を表す。

問 5 問 3 で求めた最尤推定量 $\hat{\lambda}$ は λ の不偏かつ有効推定量であることを示せ。 なお, X_i $(i=1,2,\ldots,n)$ の分散が $V(X_i)=\lambda$ であることを用いてよい。

第4問 統計学

説明変数 x_i , 目的変数 y_i $(i=1,2,\ldots,n)$ が与えられたときの回帰分析のモデル

$$y_i = \beta_0 + x_i \beta_1 + \varepsilon_i$$
, $E(\varepsilon_i) = 0$, $V(\varepsilon_i) = \sigma^2$ $(i = 1, 2, ..., n)$

を考える。ここで β_0 , β_1 は定数とし、また、

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \ s_{xx} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2, \ s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

とおく。次の問1~問4に答えよ。

問1 β_0 , β_1 の最小二乗推定量 $\hat{\beta}_0$, $\hat{\beta}_1$ は、次式で表される。

$$\hat{\beta}_0 = \bar{y} - \bar{x}\hat{\beta}_1, \quad \hat{\beta}_1 = \frac{s_{xy}}{s_{xx}}$$

この $\hat{\beta}_0$, $\hat{\beta}_1$ について、それぞれ不偏性を満たすことを示せ。

問2 問1の $\hat{eta}_0,\,\hat{eta}_1$ に対し、 $\hat{y}_i=\hat{eta}_0+x_i\hat{eta}_1$ とおく。 $V(\hat{y}_i)$ を求めよ。ただし、

$$V(\hat{\beta}_0) = \frac{\sigma^2}{n} \left(1 + \frac{\bar{x}^2}{s_{xx}} \right), \quad V(\hat{\beta}_1) = \frac{\sigma^2}{n} \frac{1}{s_{xx}}, \quad Cov(\hat{\beta}_0, \hat{\beta}_1) = -\frac{\sigma^2}{n} \frac{\bar{x}}{s_{xx}}$$

となることは用いてよい。

問3 問2の \hat{y}_i に対し、 $e_i = y_i - \hat{y}_i$ とし、さらに

$$\bar{e} = \frac{1}{n} \sum_{i=1}^{n} e_i, \quad s_{xe} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(e_i - \bar{e})$$

とおく。 $s_{xe} = 0$ となることを示せ。

問4 問3の e_i に対し、 σ^2 の推定量を

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n e_i^2$$

とおく。この $\hat{\sigma}^2$ について,不偏性を満たすことを示せ。

応用数学問題

(数理モデル解析学、現象数値解析学教育研究分野志願者)

第1問と第2問は全員解答しなさい。第3問と第4問より、1問選択し解答しなさい。

あわせて3問になります。

第1問 応用数学

以下の各問に答えなさい。

- 問**1** 曲線 $y^4 + xy^2 2 = 0$ 上の点 $(x, y) = (1, \pm 1)$ における接線を各々求めなさい。
- 問2次の関数 J(x) を最小にする x を求めなさい。

$$J(x) = \frac{(x - a_1)^2}{\sigma_1^2} + \frac{(x - a_2)^2}{\sigma_2^2}$$

ただし、 σ_1 と σ_2 はどちらも0でないとする。

問3次の積分の値を求めなさい。

$$\int_{-\pi/2}^{\pi/2} x^2 \cos x \, dx$$

問4次の関数の極値を求めなさい。

$$f(x,y) = x^2 - xy + 3y^2 - 2x + y + 1$$

第2問 応用数学

実数
$$a$$
 について, $A=\begin{pmatrix} a & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & a \end{pmatrix}$ を考える。以下の各問に答えなさい。

- 問1 Aの行列式を求めなさい。
- 問2 a = 1とする。このとき、Aは正則であることを示し、さらにAの逆行列を求めなさい。
- 問3 $\operatorname{Im} A = \{Ax; x \in \mathbb{R}^3\}$ について、 $\dim \operatorname{Im} A = 2$ が成り立つとする。このとき、a の値を求め、さらに $\operatorname{Im} A$ の正規直交基底を一組求めなさい。

第3問 応用数学

以下の各問に答えなさい。

問1 微分方程式

$$\frac{dy}{dx} + p(x)y = q(x)y^{\alpha} \tag{1}$$

を考える。ただし、p(x)、q(x) は連続関数、 α は実数で $\alpha \neq 0$ 、 $\alpha \neq 1$ とする。次の (i)、(ii) に答えなさい。

(i) 方程式(1)に対応する線形微分方程式

$$\frac{dy}{dx} + p(x)y = 0 (2)$$

の一般解を求めなさい。

(ii) y = u(x) を方程式 (2) の解の 1 つとし、また v(x) を恒等的に 0 ではない連続関数とする。 y = u(x)v(x) が方程式 (1) の解となるときに、v(x) が満たす微分方程式を導出しなさい。

問2 微分方程式

$$y\frac{dy}{dx} = y^2 + e^x (3)$$

の一般解を求めなさい。

第4問 応用数学

図 1 のように時刻 t (< 0) [s] で温度 T_0 [K] の金属棒を,時刻 t=0 に おいて瞬間的に両端を温度 T_L (< T_0) [K] に冷却した。その後,両端の温度を T_L のままで一定に保つ。このときの棒の z 軸方向の温度分布の時間変化を求める。ただし,金属棒の長さは L [m] で変化しないものとする。

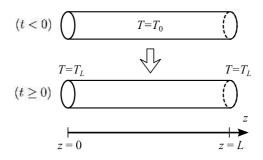


図 1:

以下の [1]–[4] の文章中の空欄 (a)–(k) に当てはまる数式を答えなさい。ただし,同じ記号の空欄には同じ数式が入る。

[1] 時刻 t (> 0) [s], 位置 z [m] での温度分布 T(t,z) [K] が従う微分方程式は次式で表される。

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial z^2} \tag{4}$$

ここで、 $\alpha \, [\mathrm{m}^2/\mathrm{s}]$ は熱拡散係数 $(\alpha > 0)$ である。無次元化された

$$t^* = \boxed{\text{(a)}}, \quad z^* = \frac{z}{L}, \quad T^*(t^*, z^*) = \frac{T(t, z) - T_L}{T_0 - T_L}$$

を用いると、式(4)は次の無次元化された微分方程式となる。

$$\frac{\partial T^*}{\partial t^*} = \frac{\partial^2 T^*}{\partial z^{*2}} \tag{5}$$

以下では、この無次元化された微分方程式を、表1の境界条件 と初期条件の下で解くことを考える。

表 1:				
	$T^*(t^*, z^*)$			
初期条件 $(t^* = 0)$	$T^*(0, z^*) = 1 \ (0 < z^* < 1)$			
左端境界条件 $(z^* = 0)$	$T^*(t^*, 0) = 0 (t^* \ge 0)$			
右端境界条件 $(z^* = 1)$	$T^*(t^*, 1) = 0 (t^* \ge 0)$			

 T^* を t^* のみの関数 $S(t^*)$ と z^* のみの関数 $Z(z^*)$ の積

$$T^*(t^*, z^*) = S(t^*)Z(z^*)$$
(6)

とおき,式(6)を式(5)に代入し,左辺が t^* のみの関数,右辺が z^* のみの関数となるように整理すると,

が得られる。よって、式(7)の両辺は定数である。

[2] この定数を $k(\neq 0)$ とすると、次の式が成り立つ。

この微分方程式の一般解は,

$$S(t^*) = C_0 \exp\left(\boxed{\text{(d)}} \right)$$
 (9)

となる。ここで, C_0 は任意の定数である。また, $Z(z^*)$ についての微分方程式

より、2階導関数がもとの関数の定数倍であるから、

$$k > 0$$
 のとき, $Z(z^*) = C_1 \sinh$ (e) $+ C_2 \cosh$ (e) (11)

$$k < 0$$
 のとき、 $Z(z^*) = C_3 \sin$ (f) + $C_4 \cos$ (f) (12)

となる。ただし、 C_1 , C_2 , C_3 , C_4 は任意の定数である。

[3] 境界条件を満たすのは, k < 0 で $C_4 = \boxed{ (g) }$ の場合で, さらに,

を満たしていなければならない。したがって、与えられた境界条件の下で、次式で表される関数が式(5)の解の1つであることがわかる。

$$T^{*}(t^{*}, z^{*}) = S(t^{*})Z(z^{*})$$

$$= A \exp\left(\begin{array}{c} (i) \end{array}\right) \sin(j)$$
 (14)

ここで、 $A = C_0C_3$ とおいた。

(次ページにつづく)

[4] 式 (5) は斉次形であるから重ね合わせの原理が成り立つので,式 (14) で表される関数の線形結合

$$T^*(t^*, z^*) = \sum_{n=1}^{\infty} A_n \exp\left(\left[(i) \right] \right) \sin\left((j) \right)$$
 (15)

が与えられた境界条件の下での式 (5) の一般解である。ここで,係数 A_n (n=1,2,3,...) は定数である。初期条件は $T^*(0,z^*)=1$ $(0<z^*<1)$ であるから,

$$\sum_{n=1}^{\infty} A_n \sin \boxed{(j)} = 1 \tag{16}$$

が成り立つ。各係数を求めるために、両辺に $\sin(m\pi z^*)$ (m=1,2,3,...) をかけて区間 [0,1] で積分する。最終的に、係数は

$$A_n = \boxed{(k)} \tag{17}$$

と求まる。